11,725 research outputs found

    Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions

    Full text link
    The effects of the length of each hydrophobic end block N_{st} and polymer concentration \bar{\phi}_{P} on the transition broadness in amphiphilic ABA symmetric triblock copolymer solutions are studied using the self-consistent field lattice model. When the system is cooled, micelles are observed, i.e.,the homogenous solution (unimer)-micelle transition occurs. When N_{st} is increased, at fixed \bar{\phi}_{P}, micelles occur at higher temperature, and the temperature-dependent range of micellar aggregation and half-width of specific heat peak for unimer-micelle transition increase monotonously. Compared with associative polymers, it is found that the magnitude of the transition broadness is determined by the ratio of hydrophobic to hydrophilic blocks, instead of chain length. When \bar{\phi}_{P} is decreased, given a large N_{st}, the temperature-dependent range of micellar aggregation and half-width of specific heat peak initially decease, and then remain nearly constant. It is shown that the transition broadness is concerned with the changes of the relative magnitudes of the eductions of nonstickers and solvents from micellar cores.Comment: 8 pages, 4 figure

    Computing spectral bounds of the Heisenberg ferromagnet from geometric considerations

    Get PDF
    We give a polynomial-time algorithm for computing upper bounds on some of the smaller energy eigenvalues in a spin-1/2 ferromagnetic Heisenberg model with any graph G for the underlying interactions. An important ingredient is the connection between Heisenberg models and the symmetric products of G. Our algorithms for computing upper bounds are based on generalized diameters of graphs. Computing the upper bounds amounts to solving the minimum assignment problem on G, which has well-known polynomial-time algorithms from the field of combinatorial optimization. We also study the possibility of computing the lower bounds on some of the smaller energy eigenvalues of Heisenberg models. This amounts to estimating the isoperimetric inequalities of the symmetric product of graphs. By using connections with discrete Sobolev inequalities, we show that this can be performed by considering just the vertex-induced subgraphs of G. If our conjecture for a polynomial time approximation algorithm to solve the edge-isoperimetric problem holds, then our proposed method of estimating the energy eigenvalues via approximating the edge-isoperimetric properties of vertex-induced subgraphs will yield a polynomial time algorithm for estimating the smaller energy eigenvalues of the Heisenberg ferromagnet

    The effect of asymmetry of the coil block on self-assembly in ABC coil-rod-coil triblock copolymers

    Full text link
    Using the self-consistent field approach, the effect of asymmetry of the coil block on the microphase separation is focused in ABC coil-rod-coil triblock copolymers. For different fractions of the rod block fBf_{\text B}, some stable structures are observed, i.e., lamellae, cylinders, gyroid, and core-shell hexagonal lattice, and the phase diagrams are constructed. The calculated results show that the effect of the coil block fraction fAf_{\text A} is dependent on fBf_{\text B}. When fB=0.2f_{\text B}=0.2, the effect of asymmetry of the coil block is similar to that of the ABC flexible triblock copolymers; When fB=0.4f_{\text B}=0.4, the self-assembly of ABC coil-rod-coil triblock copolymers behaves like rod-coil diblock copolymers under some condition. When fBf_{\text B} continues to increase, the effect of asymmetry of the coil block reduces. For fB=0.4f_{\text B}=0.4, under the symmetrical and rather asymmetrical conditions, an increase in the interaction parameter between different components leads to different transitions between cylinders and lamellae. The results indicate some remarkable effect of the chain architecture on self-assembly, and can provide the guidance for the design and synthesis of copolymer materials.Comment: 9 pages, 3 figure

    Controlling edge states of zigzag carbon nanotubes by the Aharonov-Bohm flux

    Get PDF
    It has been known theoretically that localized states exist around zigzag edges of a graphite ribbon and of a carbon nanotube, whose energy eigenvalues are located between conduction and valence bands. We found that in metallic single-walled zigzag carbon nanotubes two of the localized states become critical, and that their localization length is sensitive to the mean curvature of a tube and can be controlled by the Aharonov-Bohm flux. The curvature induced mini-gap closes by the relatively weak magnetic field. Conductance measurement in the presence of the Aharonov-Bohm flux can give information about the curvature effect and the critical states.Comment: 5 pages, 4 figure

    ChemInk: A Natural Real-Time Recognition System for Chemical Drawings

    Get PDF
    We describe a new sketch recognition framework for chemical structure drawings that combines multiple levels of visual features using a jointly trained conditional random field. This joint model of appearance at different levels of detail makes our framework less sensitive to noise and drawing variations, improving accuracy and robustness. In addition, we present a novel learning-based approach to corner detection that achieves nearly perfect accuracy in our domain. The result is a recognizer that is better able to handle the wide range of drawing styles found in messy freehand sketches. Our system handles both graphics and text, producing a complete molecular structure as output. It works in real time, providing visual feedback about the recognition progress. On a dataset of chemical drawings our system achieved an accuracy rate of 97.4%, an improvement over the best reported results in literature. A preliminary user study also showed that participants were on average over twice as fast using our sketch-based system compared to ChemDraw, a popular CAD-based tool for authoring chemical diagrams. This was the case even though most of the users had years of experience using ChemDraw and little or no experience using Tablet PCs.National Science Foundation (U.S.) (Grant 0729422)United States. Dept. of Homeland Security (Graduate Research Fellowship)Pfizer Inc
    corecore